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Abstract--Numerical simulation of steady forced convection heat transfer in a laminar flow field over an 
infinite (periodic) and finite in-line array of cylinders is performed. The cylinders are arranged with a pitch 
to diameter ratio of two, and are heated internally with a uniform distribution of heat sources. The 
conjugate heat transfer problem is described by two coupled energy equations (one for the fluid, the other 
for the solid) and the Navier Stokes equations. This system is solved on curvilinear coordinates via a finite- 
difference kerative scheme and a domain decomposition procedure. By varying the ratio of fluid-to-solid 
thermal conductivity (FS) between 0.01 and 100, a parametric study of heat exchange between the solid 
and fluid (as expressed by the Nusselt number) is reported for Reynolds numbers between 100 and 400 
and Prandtl number equal to 0.71. Our results reveal that the internal heat generation case is profoundly 
different from that of the isothermal cylindrical array if FS is larger than unity. As FS approaches extreme 
values, e.g. 0.01 (or 100), the temperature field can be approximated by invoking simpler models, e.g. local 

thermal equilibrium (or concentric) model. 

11, I N T R O D U C T I O N  

Lately, conjugate problems have been receiving 
increasing attention in the heat transfer literature. In 
this work, we concentrate on the conjugate heat trans- 
fer problem involving the coupling of the cool external 
crossflow with the internal thermal diffusion in volu- 
metrically-heated cylinders in tandem. This problem 
has important applications in the field of nuclear 
engineering (reactor safety analysis) and combustion, 
cf. Golombok et al. [1]. Moreover, the study of flows 
in the interstitial space of a large periodic array of 
cylinders can provide important clues for the model- 
ing of convective transport in idealized, two-dimen- 
sional (2D), fully-saturated packed beds. In the case 
of a pebble bed reactor, for example, the reactor core 
consists of a bed of fuel-graphite elements cooled by 
a downward flow of coolant. During normal oper- 
ation, the flow is in a forced convection mode, and 
the core is heated volumetrically by fission. 

This model preblem is also related to a 2D model 
for dryout in inductively heated beds of steel spheres 
fully saturated with a coolant. Another potential 
application is in the design of the porous flat-plate 
solar collector. The absorber is a porous plate which 
heats up as it ab:~orbs incoming radiation and then 
acts as an internal heat source. Finally, a connection 
can be established between the model problem and 
the field of crosstlow heat exchangers. This involves 
the cooling of parallel tubes arranged in periodic pat- 
terns, a problem which is reviewed by Zukauskas [2]. 

+Author to whom correspondence should be addressed. 

The starting point for the study of general problems 
dealing with crossflow through tube banks has been 
the consideration of flow over a bank of isothermal 
cylinders. However, in the majority of cases, the 
assumption of isothermal boundary conditions is 
unrealistic. Finite thermal resistance inside the tubes 
leads to variable temperature profiles in the interior. 
A complicated conjugate heat transfer problem has to 
be solved to account for the tube wall and interior- 
exterior flow. A simpler yet realistic alternative is to 
solve the conjugate problem involving thermal coup- 
ling of heat-generating cylinders with exterior 
crossflow normal to the cylinders, An internal heat 
generation term will account for the convective supply 
of thermal energy due to internal flow. 

There is a growing body of literature concerning 
the hydrothermal field over isothermal, in-line array 
of spheres and cylinders immersed in crossflow, cf. 
Dhaubhadel et al. [3], Li and Chen [4] and Wung and 
Chen [5, 6]. In the numerical studies, it is frequently 
assumed that the flow is steady and symmetric with 
respect to the centerline of the cylinders in the same 
row, at least for small to intermediate Reynolds num- 
bers. The same assumption was made in the study of 
regular arrays of in-line spheres, cf. Tal et al. [7-9], 
Chen and Tong [10]. All the studies consider the for- 
ced convection regime in which (Gr/Re 2) ~ O. Gr is 
the Grashof number based on fluid properties and 
cylinder diameter, cf. Armaly et al. [11]. Therefore, 
the flow is decoupled from the heat transport process 
and can be studied independently. Baugh and Saniei 
[12] reported measurements on arrays of cylindrical 
pin fins with uniform heat flux boundary conditions 
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Tmax- Tmin maximum temperature 
difference in a block, dimensional 

NOMENCLATURE 

af, as thermal diffusivity of fluid and solid, 
respectively 

Cp heat capacity 
D cylinder diameter 
FS fluid-to-solid conductivity ratio, 

VS = k jk s  
G mean temperature gradient (developed 

regime), equation (16) 
J Jacobian of coordinate transformation 
kf, ks thermal conductivity of fluid, solid, 

respectively 
L pitch, distance between centers of 

cylinders in tandem 
n unit normal to domain decomposition 

boundary 
Nu average Nusselt number, defined in 

equation (20) 
local Nusselt number defined as 
temperature gradient 
Peclet number (RePr) 
Prandtl number (0.71) 
control function for grid generation 
total heat generation in cylinder 
internal heat generation rate per unit 
volume 
Reynolds number, UD/v 
time 
temperature 
temperature in the fluid and in the 
solid, respectively 

Tm~x-- Tmm maximum temperature 
difference in a block, scaled with AT 

u, v velocity component in x, y direction, 
respectively 

U average velocity, V/(2D) 
V volumetric flow rate per unit depth 
x, y streamwise, cross-stream Cartesian 

coordinates, respectively. 

Greek symbols 
2 +y2 0~ xq 

fl x~x~ + ycy~ 
x~ + y~ 

A T characteristic temperature for scaling, 
qsD2/ks 

p fluid density 
4, r/ coordinates in the computational 

domain 
v kinematic viscosity 
T unit tangent 
¢ azimuthal position on cylinder 

perimeter, (~b = 0, upstream 
stagnation point) 

~P stream function 
a) vorticity. 

Subscripts 
f fluid 
s solid 
1 local 
¢, q ~-, q-derivative, respectively. 

but these results are beyond the scope of our work 
since they are exclusively in the turbulent flow regime. 

With the exception of the numerical simulation by 
Kelkar et al. [13], there is a lack of studies of forced 
convection over regular arrays of cylinders with 
internal heat generation. Wakao et al. [14] simply 
stressed the unreliability of existing experimental data 
concerning forced convection through packed beds of 
heat-generating particles. Eichhorn and White [15] 
employed high-frequency heating to generate heat in 
spherical particles and reported that the temperature 
of the particles increases linearly along the flow-direc- 
tion. In contrast, Balakrishnan and Pei [16] and Bhat- 
tacharyya and Pei [17] found that the particle tem- 
perature is uniform throughout the bed. Wakao et al. 
[14] reviewed all the available experimental inves- 
tigations with emphasis on the assessment of validity 
of various average energy equation models for con- 
vection in packed beds. Such models have been built 
on the equivalence between the real medium and two 
interspersed fictitious continua which represent the 
solid and liquid phases. Heat transfer between the 
phases is explicitly described by an average heat exch- 

ange coefficient which is assumed to be only a function 
of the mean velocity and various geometric par- 
ameters of the packed bed. It is our contention that 
only a direct simulation of the interstitial hydro- 
thermal field can provide a platform for testing such 
idealizations, cf. Georgiadis [18]. 

The aforementioned applications and the lack of 
research in this area provide the main motivation for 
the fundamental study of convective cooling of heat- 
generating cylinders in tandem. We consider here an 
idealized 2D configuration of infinite parallel cylinders 
subject to crossflow. Owing to the symmetries of the 
system, we assume that no momentum or energy 
transfer takes place in the crossflow direction at the 
streamwise equidistant planes between rows of cylin- 
ders. Therefore, it suffices to examine only the flow 
and temperature fields in a 2D streamwise channel 
consisting of a single row, as shown in Fig. 1. Two 
truncated domains are studied: a single-cylinder cell 
and a five-cylinder channel. The first is relevant in the 
developed regime; the hydrodynamic field acquires a 
periodic character in the streamwise direction far from 
the entrance, cf. Patankar et al. [19]. The five-cylinder 
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Fig. 1. A periodic bank of heated cylinders in crossflow. Two 
computational domains are delineated : the upper rectangle 
marks the periodic regime (1 block). The lower rectangle 
shows the developing regime at the entrance (5 blocks). The 
boundaries marking the decomposition of each block into 

subdomains are also shown. 

channel corresponds to the developing regime at the 
entrance region, arLd is introduced in order to estimate 
the effective length of the developing regime. 

The present paper is organized as follows. First, the 
mathematical modiel is defined in Section 2, and the 
numerical scheme and method of solution are 
described in Section 3. Second, results of a simulation 
of the periodic regime for Reynolds numbers in the 
range 100-400, and for conductivity ratios from 0.01 
to 100, are presented in Section 4.1. Third, the 
entrance effect is analyzed by simulating forced con- 
vection over a five-cylinder array in Section 4.2. 
Finally, concluding remarks are made in Section 5. 

2. MATHEMATICAL  FORMULATION 

We consider 2D laminar flow around a row of ident- 
ical cylinders of diameter D and spaced 2D apart, as 
shown in Fig. 1. The governing equations for incom- 
pressible flow in streamfunction-vorticity formulation 
and for forced convective heat transfer are given by : 

q o~ (1) gtX 2 ay 2 

__at'D+6l ~X (u('O) q- ~fy (t)(O) = V l~X2X2 fa2 ('0 q- a2 r"°'~ay 2 J (2) 

aT a ~yy (a2r a2T'~ 
at + ax  ( u T ) +  (vT) =af~ax2 q- aYeJ (3) 

a T [a 2 T 62 T) q~ 

e7  = as ~7~-x2 + 0~2 J ~+ (pCp), " (4) 

Equation (4) governs conductive heat transfer within 
the solid cylinder and equations (1)-(3) describe heat 
transfer within the fluid-occupied area in the absence 
of buoyancy forces and radiation effects. Since we 
consider steady-state fluid flow and heat transfer, the 
transient terms cart be dropped. 

The governing equations can be non- 
dimensionalized by using the diameter D of the cyl- 
inder as the characteristic length, the average velocity 
U in the domain as the characteristic velocity, and 
A T = qsD2/ks as the characteristic temperature: 

a2~ a2~ 
- -  + o~ ( 5 )  
aX 2 ay 2 

a a 
(ut~) + ~yy (wo) = Ree l ~ x  2 + --~ay 2 J (6) ~x 

a a 1 (c~2T azT } 
(uT)+ = + ( 7 )  a~ Yy 

a2T a2T 
+ - 1. (8) aX 2 ay 2 

Any new notation due to non-dimensionalization is 
suppressed in equations (5)-(8). The streamfunction 
boundary conditions are given below : 

q~ = 0.0 on surfaces of cylinders 

= - 0.5 on lower slip wall 

~b = 0.5 on upper slip wall 

6(x)  = 6 ( x + L )  

for entrance and exit (streamwise periodic condition). 

The vorticity boundary conditions are : 

co = 0 on the upper and lower slip wall 

~(x )  = oo(x + L) 

for entrance and exit (streamwise periodic condition). 

The vorticity boundary condition for the cylinder wall 
is derived by using the Poisson equation for stream- 
function and the noslip condition on the wall through 
the Taylor series expansion technique, see Peyret and 
Taylor [20]. The temperature boundary conditions 
are : 

aT 
- 0 on the upper and lower slip wall 

an 

where n is normal unit vector to the horizontal upper 
and lower walls. These are actually symmetry bound- 
ary conditions and correspond to an infinite stack of 
periodic cylinder arrays. The boundary conditions for 
the temperature field at the entrance and exit need 
special consideration and will be discussed later. 

A composite boundary-fitted grid is used to describe 
the physical domain, cf. Wang and Georgiadis [21]. 
The grid is generated numerically based on a coor- 
dinate transformation technique developed by 
Thompson et al. [22]. In the curvilinear coordinate 
system, the governing equations are transformed into 
the following form : 
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+78q 2 + j 2 O _ _ ~  = -09 (9) 

1 809 O~ 1 80) 8ff 1 
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(10) 

1 8T&p 1 8TS~p 1 

J 63~8r I J 63rl8~ ReJ  2 

( 82T 82T 82T 2 8T 2 ST] 

(l l)  

Given the geometrical simplicity of the cylinders, we 
choose the polar coordinate system over the general 
curvilinear coordinate system for the interior of the 
cylinder. Two difficulties arise at this point. At the 
origin of the polar coordinate system (r = 0), a math- 
ematical singularity exists which cannot be readily 
removed when the temperature field lacks centro-sym- 
metry. We have avoided the difficulty by reverting 
back to the Cartesian coordinate system at the origin. 

3. DOMAIN DECOMPOSITION AND NUMERICAL 
METHOD 

In addition to numerical curvilinear coordinate 
transformation, domain decomposition is used to pro- 
cess the complex geometry introduced in Section 2, 
following Wang and Georgiadis [21]. The decompo- 
sition of the physical domain is carried out on two 
levels: The domain is first dissected into blocks, as 
shown in Fig. 1, with each block containing a single 
cylinder. Second, each of the blocks is further decom- 
posed into four subdomains (of very simple shape) 
surrounding the cylinder. Owing to the symmetry of 
the present geometry, the meshing of subdomains is 
straightforward : only one curvilinear coordinate sys- 
tem is actually generated. For the other three sub- 
domains in the block, a simple rotation of the curvi- 
linear coordinate system by 45 ° sets up the required 
coordinate system, as shown in Fig. 2. After a numeri- 
cal grid is generated for one block, the meshing of the 
other blocks in the flow field can be completed by 
horizontal translation. 

The method of domain decomposition delineated 
above suggests a natural way of organizing the data 
structure for the computation. Our algorithm is con- 
structed around the concept of 'objects'. At the lowest 
level, the object 'subdomain' is constructed: all the 
variables describing the curvilinear grid, the flow and 
the temperature fields in each subdomain are grouped 
together. At a higher level, the object of 'block' is 

\ \ x x x ~ l l t ; / / / /  
i 

Fig. 2. Numerical grid in a single block. Polar coordinates 
are used ~r  the cylinder interior. 

constructed : each contains one cylinder and is made 
of five subdomains, four around the cylinder, and the 
fifth the cylinder itself. At the highest level there is the 
object of 'field', which is composed of many 'block' 
objects and constitutes the total computational 
domain. 

Since the governing equations in each subdomain 
are elliptic partial differential equations, conditions 
need to be imposed on all boundaries to obtain a well- 
posed problem. In the context of domain decompo- 
sition methods, boundary conditions can be classified 
into two kinds : outer and inner. The outer boundary 
conditions are those given at the entrance and exit, 
and on the upper and lower boundaries of the com- 
plete computational domain, as discussed in the pre- 
vious section. The inner boundary conditions are 
those imposed at the domain decomposition 'cuts'. In 
the fluid field, the inner boundary conditions for 
second order partial differential equations, such as 
equations (5)-(8), are expressed by imposing con- 
tinuity of each field variable and of the first derivative 
of each field variable. Mathematically, this expressed 
a s  

~./" Of+ 
= ( 1 2 )  

8n c~n 

Of Of + 
Oz Oz (13) 

where f represents the streamfunction, vorticity or 
temperature. The + / -  signs correspond to the two 
sides separated by the subdomain boundary, and z, n 
are the unit tangent and normal to this boundary, 
respectively. The inner temperature boundary con- 
ditions at the solid-fluid interface are supplied by 
imposing conservation of heat flux across the inter- 
face. This condition, in non-dimensional form, 
becomes 
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0Ts = FS ~Tr (14) 
On On 

where FS is the fluid-solid conductivity ratio, kdks. 
Standard finite-difference approximations are used 

to discretize the transformed governing equations in 
each subdomain. The governing equations (9)-(11) 
are solved iteratively via the Alternating Direction 
Implicit (ADI) method. With the physical domain 
properly decomposed and represented, the sub- 
domains serve as ~:he basic units of the simulation. 
The computation is performed independently in each 
subdomain and an iterative procedure is set up. This 
procedure is initialed by assuming a plausible initial 
guess for the inner boundary data. Equations (9)- 
(11) are then solved in each subdomain and the inner 
boundary values are updated by using (12), (13) or 
(14), depending on whether a fluid-fluid or fluid-solid 
interface is concerned. This is effectively a fixed-point 
iteration scheme equivalent to a block Gauss-Seidel 
method. Although this scheme is amenable to par- 
allelization, cf. Wang and Georgiadis [21], a Cray Y- 
MP computer in a serial mode is used in this work. 

4. RESULTS AND DISCUSSION 

Heat transfer is driven by the heat generated inside 
the solid cylinders. Thermal energy is conducted out 
of the cylinders and into the fluid, and it is in turn 
transported out of the domain by conduction and 
convection through the fluid. The computation is car- 
ried out for two regimes : (1) the periodic regime where 
the field is fully developed and (2) the entrance regime 
where the flow and temperature fields are spatially 
developing. Although the study of heat transfer 
phenomena in the developed regime forms the core of 
the present work, we also devote some attention to 
the entrance effect and the associated boundary con- 
ditions. 

4.1. Periodic regime 
The streamfunction field for flow at Re = 100 is 

plotted in Fig. 3. The top and bottom boundaries of 

Fig. 3. Periodic flow at Re = 100. The streamline contour 
level is 0.05. 

the domain are subject to the slip condition, which 
simulates the configuration where identical cylinder 
arrays are stacked at regular intervals in the y-direc- 
tion so that periodicity in that direction is established. 
The entrance and exit of a single cylinder block are 
subject to the periodicity condition for streamfunction 
and vorticity. In practice, this periodic flow field can 
be attained a few cylinder diameters downstream from 
the entrance region of a cylinder bank. 

For the temperature field, the infinite extent of the 
cylinder array in both x- and y-directions implies that 
the following boundary conditions are pertinent : the 
top and bottom boundaries are insulated (resulting 
from symmetry in the y-direction), and the tem- 
perature field around the cylinder is fully-developed 
in the streamwise direction. We have to underline the 
fact that the characterization 'fully-developed' 
acquires a special meaning in the case of  heat gen- 
erating cylinders. The temperature profiles at the 
entrance and exit are not identical: the energy sup- 
plied by the cylinder increases the internal energy of 
the fluid as it flows over the cylinder. Therefore, the 
temperature at the exit is higher than that at the 
entrance. The fully-developed condition is 
implemented with the consideration that, far down- 
stream from the entrance region, the temperature 
increase in each cylinder block is identical to that of 
the preceding block. The temperature field can be 
decomposed into a linear component and a periodic 
component 0 : 

T(x, y) = Gx + O(x, y) (15) 

where the linear component accounts for the tem- 
perature increase due to internal heating, with a gradi- 
ent G defined as : 

qs~D 2 
G (16) 

4(pCp)fLV 

and a periodic component : 

O(x,y) = O(x+L,y) .  (17) 

The decomposition scheme given by (15) was also 
used by Patankar et al. [19]. 

Figure 4 gives the temperature contour plots for 
conductivity ratios FS = 0.01, 1, 100, and for Reyn- 
olds number Re = 100. The isotherms correspond to 
constant temperature increments. For  the lowest con- 
ductivity ratio of 0.01, which corresponds to the case 
of the solid cylinder being much more conductive than 
the fluid, the temperature in the cylinder is uniform. 
As will be shown in the following, the temperature 
differences in the fluid are also small. This complies 
with the assumption of local thermal equilibrium often 
made in the modeling of heat transfer in fluid-satu- 
rated packed beds, cf. Georgiadis [18]. The thermal 
resistance is exclusively outside the cylinder. When 
the conductivity ratio is increased to 0.1 and 1.0, the 
temperature field in the fluid keeps the basic features 
exhibited by the FS = 0.01 case; there is a well- 
developed thermal boundary layer near the cylinder 
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(a) 

(b) 

(c) 

Fig. 4. Effect of conductivity ratio, FS, on the fully-developed 
temperature field for Re = 100. The sum of the periodic and 
linear temperature components [defined in equation (15)] is 

plotted. (a) FS = 0.01, (b) FS = 1, (c) FS = 100. 

owing to convection. At the same time, important 
changes are taking place inside the solid cylinder. 
Owing to the increase in conductivity ratio (resulting 
from the decrease in the solid conductivity and 
assuming that the conductivity of the fluid remains 

constant), the thermal resistance inside the solid cyl- 
inder becomes more important, and a temperature 
gradient in the cylinder becomes gradually estab- 
lished. At FS = 1, the thermal resistance inside and 
outside the cylinder become balanced; the number 
of contour lines inside and outside the cylinder are 
approximately equal to each other. 

As the conductivity ratio FS becomes greater than 
1 (corresponding to high fluid conductivity or low 
solid conductivity), the solid cylinder provides most 
of the thermal resistance. The number of isotherms in 
the fluid decreases as FS increases, whereas the num- 
ber of isotherms enclosed by or running through the 
solid cylinder increases. At FS = 100, the temperature 
of the fluid is practically uniform. The isotherms in 
the cylinder take the form of concentric rings. At this 
limit, the temperature field is consistent with the so- 
called concentric model for packed beds, cf. Wakao et 
al. [14]. 

The effect of convection is analogous to the effect of 
conductivity ratio. As the Reynolds number increases, 
the intensity of the convective heat transfer in the 
fluid increases. It can be observed that the number of 
isotherms in the fluid decreases as the Reynolds num- 
ber is increased from Re = 100 in Fig. 4(b), to 200 in 
Fig. 5(a), and to 400 in Fig. 5(b), all obtained for 
FS -- 1. This trend is true for all conductivity ratios, 
although it is more obvious for values close to unity. 
When the conductivity ratio is well above one, the 
temperature field in the fluid becomes uniform. Thus, 
convection does not contribute much to the overall 
heat transfer. When the conductivity ratio is well 
below one, the cylinder becomes isothermal and major 
resistance remains in the fluid. Again, the contribution 
of convection to the overall heat transfer in the fluid 
(for the range of Reynolds number studied) is not 
enough to offset the dominance of the high con- 
ductivity in the solid cylinder. Only when the con- 
ductivity ratio is close to one, convection becomes an 
effective mechanism for adjusting the distribution of 
thermal resistance. The proportion of isotherms in the 
fluid and in the solid becomes sensitive to the intensity 
of convection. 

The effect of convection can be quantified by exam- 
ining the distribution of local Nusselt number. We 
define the local Nusselt number as the local tem- 
perature gradient normal to the surface of the 
cylinder : 

QT 
Nul = ~n" (18) 

Figure 6 gives the plots of local Nusselt number vs 
the azimuthal position ~b for three conductivity ratios 
FS = 0.01, 1, 100. The upstream stagnation point on 
the cylinder corresponds to q~ = 0. Owing to the fact 
that the characteristic temperature used is inversely 
proportional to the conductivity of the solid, the local 
Nusselt number defined in (18) is inversely pro- 
portional to FS. 
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(a) ~ (b) 
Fig. 5. Effect of Reynolds number on the fully-developed temperature field for FS = 1. The sum of the 
periodic and linear temperature components [defined in equation (15)] is plotted. (a) Re = 200, (b) 

Re = 400. 

A common feature in Figs. 6(a)-(c) is that all the 
curves in each plot have the same mean value. The 
integral of the local Nusselt number over the wetted 
cylinder surface gives the total heat generated in the 
solid cylinder. Any increase in convection can only 
change the distribution of local heat flux (local Nusselt 
number). We observe that at the low conductivity 
ratio FS = 0.01, the local Nusselt number, as defined 
by equation (18), is a weak function of Reynolds 
number. In order to explain this, let us note that the 
temperature of the cylinder is approximately uniform 
and that the temperature field in the fluid becomes 
similar to that around an isothermal cylinder array, a 
problem studied by Tal et al. [8], among others. In the 
case of convective heat transfer around isothermal 
cylinders, an increase in Reynolds number simply 
raises the local Nusselt number uniformly, signifying 
stronger convective heat exchange. In the internal 
heating case, however, the total heat flux from the 
cylinder is fixed and convection serves to redistribute 
weakly the local heat flux. Higher Reynolds numbers 
produce higher local heat flux intensity near q~ = 80 ° 
and 280 ° , and in the wake region. The local heat flux 
at the stagnation paint of the cylinder is decreased to 
compensate. For conductivity ratios equal to one and 
higher, variations in Reynolds number start to affect 
the distribution of the local Nusselt number. The 
upstream and downstream stagnation regions have 
minimum Nusselt values, while maxima occur near 
q5 = 90 ° and 270 °. As the Reynolds number increases, 
the azimuthal vari~Ltion in Nu~ is suppressed. 

The definition of local Nusselt numbers given by 
equation (18) is not practical in the engineering 
context. The total heat flux from the solid surface is 
known (since the volumetric heat generation is pre- 
scribed). For the temperature field described by (15), 

a meaningful estimate of the temperature rise within 
each block can be given by subtracting the lowest 
temperature (upstream corners of the block bound- 
ary) from the maximum temperature (invariably 
occurring inside the cylinder). This temperature 
difference obtained from simulation is multiplied by 
the conductivity ratio, FS, and plotted vs the Reynolds 
number. The ordinate in Fig. 7 is the nondimensional 
temperature difference obtained by using the con- 
ductivity of the fluid and not that of the solid. This is 
accomplished by dividing the dimensional tem- 
perature difference with ATf = qsD2/kf. With this 
scaling, we can consider changes in conductivity ratio 
to occur as a result of increasing or decreasing the solid 
conductivity, with the fluid conductivity remaining 
constant. As the conductivity ratio approaches zero 
(highly conductive solid), the temperature difference 
of the field is determined only by the thermal resist- 
ance of the fluid. This is the lower limit for the tem- 
perature difference. When the conductivity ratio is 
increased above one, the highest temperature gradient 
shifts to the interior of the solid cylinder (thermal 
resistance in the solid dominates). The temperature 
rise in the field increases (without bounds) as the con- 
ductivity of the solid decreases. This temperature rise 
is proportional to FS (or inversely proportional to ks) 
and this agrees with the fact that conduction becomes 
the dominant heat transfer mechanism. 

In order to present our results in a more traditional 
form so as to obtain some comparison with relevant 
results from the literature, we need to define an aver- 
age Nusselt number. If we define the heat transfer 
coefficient, h, by the following relation : 

nD 2 
Qs = T q s  = nDh(7~max -/~min) (19) 
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Fig. 6. Distribution of the local Nusselt number on the sur- 
face of each cylinder in the developing regime. (a) FS = 0.01, 

(b) FS = 1, (c) FS = 100. 

and the average Nusselt number by : 

N u -  
hD D2qs ks l 

kf 4(Tmax- Z=mi,) k~kf 4(Tmax-- Tm~,)FS 

(20) 

then the results of  Fig. 7 can be modified and tabulated 
in Table 1 in terms of  Nu. 

Two trends are apparent by examining Table 1 : (1) 
the Nusselt number increases monotonically with Re 
at a rate which is a weak function of  FS;  (2) the 
Nusselt number decreases strongly as FS increases, 
especially in the 1 ~< FS ~< 100 range. Only the 
0.01 ~< FS ~< 1 regime can be meaningfully related to 
available results from the literature, since most of  

= 

F S = I  O 0  

FS=  10 

F S = I . 0  I - ~  • • 

F S = 0 . 1  ~ / - - ~ , - ~ [ , = _ , _ ~ , _ ~  .I. 

F S = O . 0 1  

| i i i 

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  

Re 
Fig. 7. Plot of temperature rise in a block vs Reynolds num- 
ber (fully-developed regime) with conductivity ratio, FS, as 

a parameter. 

available work focuses on flow over isothermal cylin- 
ders. There is a similarity between this regime and that 
for crossflow over isothermal cylinders. Unfor-  
tunately, the tube-bank heat exchanger results are not 
given in a form that is convenient for comparison, cf. 
Zukauskas [2]. The results of  Dhaubhadel  et al. [3] do 
not give numerical values for average Nusselt numbers 
but an estimate can be made from their original figures 
6(b) and 6(c) : for Re = 300, pitch to diameter ratio 
1.5, and Pr = 0.7, the average Nusselt number for the 
fifth cylinder is 5.38. When the pitch-to-diameter ratio 
is changed to 1.8, the average Nusselt number for the 
same cylinder is 4.4. They postulate that the Nusselt 
number decreases with the pitch-to-diameter ratio. If  
the data are extrapolated to pitch-to-diameter ratio of  
2.0 (our value), the average Nusselt number is 3.75, 
which agrees well with our prediction of  3.84 (for 
FS = 0.01). Other results with local information 
known to us are for arrays of  isothermal spheres. 
For  example, Tal et al. [8] predicted Nu = 5.935 for 
periodic flow over an infinite array of  isothermal 
spheres with pitch-to-diameter ratio of  1.5, Re = 100, 
and Pr = 1. Tal et al. [9] used a two-sphere system 
with LID = 2.5 and computed Nu = 3.54 for the 
second sphere at Re = 100, Pr = 1. Our results from 
Table 1 for F S - - 0 . 0 1 ,  0.1 are consistent with the 
above results, keeping in mind that the latter were 
obtained for arrays of  spheres while our study con- 
cerns arrays of  cylinders. The wetted area (area 
exposed to the flow) of  a cylinder is 2/3 of  that of  a 
sphere with identical volume and diameter. For  the 
same internal heat generation rate, the cylinder 
develops a larger A T, which translates to a lower aver- 
age Nu than that o f  a sphere. 

A final test of  the present results can be obtained 
by juxtaposing our solution for high FS and Re to the 
solution of  the following simpler problem: a single 
cylinder (of uniform conductivity and internal heat 
generation) is exposed to an infinite isothermal fluid, 
and has a uniform heat transfer coefficient on its 
surface. To the limit of  infinite heat transfer 
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Table 1. Average Nusselt number as a function of fluid-to-solid ratio (FS) and 
Reynolds number (Re) for the conjugate heat transfer problem in the developed 

regime 

Re FS = 0.01 FS = 0.1 FS = 1.0 FS = 10 FS = 100 

100 3.171 2.632 1.543 0.309 0.0368 
200 3.502 2.887 1.761 0.321 0.0373 
300 3.824 2.966 1.984 0.352 0.0375 
400 4.152 3.049 2.101 0.368 0.0390 

coefficient, the maximum temperature difference 
(achieved between the center of the cylinder and the 
surrounding fluid) approaches the value 1/16 (dimen- 
sionless). Referring to equation (20) and Table 1, our 
results for FS = 100 and Re- -400  give a value of 
1/15.6 for the maximum temperature difference, 
Tin,x- Train. These values are roughly attained at the 
same points as in the simpler problem, as Fig. 4(c) 
implies. 

4.2. Developing regime 
In this subsection, we will discuss the developing 

regime of flow and heat transfer near the entrance of 
the cylinder array, and for simplicity, we will consider 
Dirichlet boundary conditions for the entrance, upper 
and lower boundaries. Several issues need to be 
addressed, such as the proper outflow boundary con- 
ditions, the length needed to reach periodicity 
(entrance length), and the effect of conductivity ratio. 

Traditionally (Tal et al. [7], Chen and Tong [10]), 
the exit boundary conditions for streamfunction, vor- 
ticity and temperalure field are assumed to be of Neu- 
mann type : 

~f 0 (21) 
8n 

where n is the unit normal to the exit, f represents 
the streamfunction, vorticity or temperature. In our 
computation, we find that the above condition is 
acceptable only in terms of the hydrodynamic field 
(streamfunction and vorticity). 

We use equation (21) as the exit boundary condition 
in the computation of the streamfunction and vorticity 
field for the five in-line cylinder array. At the entrance 
to the array, a uni/brm velocity profile is imposed. On 
the upper and lower walls, the slip boundary condition 
is used. We compare this flow field with the periodic 

flow field discussed in Section 4.1, for Re = 100. 
Periodicity is established starting from the third 
cylinder. In fact, there are only minor differences 
between the flow field around the second cylinder and 
the periodic flow field, which implies that the hydro- 
dynamic entrance length is four cylinder diameters for 
the above Re. This motivates our assumption that the 
periodic computation can be used to provide the exit 
boundary conditions (or to define a 'buffer' domain) 
for the in-line array. Figure 8 gives the streamfunction 
distribution with exit boundary conditions obtained 
from the periodic solution. The streamfunction and 
vorticity fields resulting from this exit boundary con- 
dition agree with the one obtained using (21). Accord- 
ing to this criterion, equation (21) is proven to be an 
adequate exit boundary condition for the flow field. 

We have computed the temperature field for con- 
ductivity ratios FS = 0.1, 1.0 and 10, and a constant 
Reynolds number of 100. Figure 9 gives the tem- 
perature distribution for crossflow over a five in-line 
array of cylinders when the conductivity ratio is 1.0. 
For FS = 0.1, we performed the computation by using 
both (21) and the periodic field as the exit boundary 
condition. The local Nusselt numbers from both cases 
are compared with the periodic regime solution having 
the same upper and lower wall conditions (Dirichlet). 
The local Nusselt number profiles on the surface of 
the last few cylinders converge to the local Nusselt 
profile for the periodic regime, if the periodic regime 
solution is used at the exit. In contrast, the profiles 
obtained using (21) do not converge to the periodic 
profile. Instead, the local Nusselt number is under- 
predicted. We conclude that for exit condition for the 
temperature field, the periodic boundary condition is 
preferable. 

Figure 10(a) depicts the local Nusselt number pro- 
files on the surfaces of the five in-line cylinders for 

Fig. 8. Flow field in the entrance region with periodic exit boundary condition for Re = 100 and FS = 1. 
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Fig. 9. Temperature field in the developing regime with periodic exit boundary condition for Re = 100 and 
FS = 1. 

FS = 0. I. We can see that the first cylinder has a Nul 
profile which differs significantly from that for the 
other cylinders. The front of the first cylinder, which 
faces the incoming cold fluid, exhibits a uniform Nus- 
selt number distribution typical of stagnation flow. 
Starting from the wake of the first cylinder, the local 
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Fig. 10. Local N usselt number distribution in the developing 
regime. (a) FS = 0.1, (b) FS = 1, (c) FS = 10. 

Nusselt number acquires a typical oscillatory shape. 
The profiles of the last four cylinders converge into a 
limit profile, indicating developed periodic regime. 
This lends support to the conjecture made by Cheng 
and Tong [10] (who studied the analogous flow 
around arrays of in-line spheres) that periodicity can 
be expected after the first sphere. Figure 10(b) is the 
local Nusselt number distribution when the con- 
ductivity ratio is 1. At this conductivity ratio, the 
temperature field becomes periodic at larger distances. 
Both the first and the second cylinders have profiles 
tangibly different from those succeeding them. When 
FS is greater than one, the temperature field does not 
seem to develop into the periodic regime within five 
cylinders, as shown in Fig. 10(c). The last result should 
be considered with caution, since periodic exit con- 
ditions are used while streamwise periodicity does not 
develop. 

5. CONCLUSIONS 

The phenomena of heat transfer and fluid flow 
around arrays of cylinders in crossflow are important 
in regard to many engineering applications. The pre- 
sent work extends earlier research on convective heat 
transfer of isothermal cylinders by studying a con- 
jugate problem involving a heat generating cylinder 
array located in crossflow. Both the developed and 
entrance regimes have been investigated using the 
method of domain decomposition based on numerical 
grid generation and finite difference discretization. 
The investigation demonstrates that the numerical 
scheme used here is flexible in handling the complex 
geometry as well as different material properties in the 
field. 

We can briefly summarize our heat transfer results 
as follows : 

(1) Developed (periodic) regime: the temperature 
rise for fixed internal heating rate decreases mon- 
otonically with Reynolds number but increases with 
the fluid-to-solid conductivity ratio, FS. 

(2) Developing regime : the hydrodynamic 
entrance length is about two-cylinders long. The ther- 
mal entrance length depends on the conductivity ratio. 
The entrance regime is only two cylinders deep when 
FS = 0.1, but becomes deeper as FS increases. 
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(3) Exit bounda ry  condi t ions :  the Neumann- type  
bounda ry  condi t ion  is sat isfactory as far as the hydro-  
dynamic  field is concerned,  while a tempera ture  exit 
bounda ry  condi t ion  based on  the periodic regime 
(buffer domain)  solut ion is generally preferable.  

(4) Commen t s  regarding packed bed models :  the 
concentr ic  model  of  W a k a o  et al. [14] seems to be a 
good approx imat ion  for FS values larger than  10. On 
the o ther  hand ,  the tempera ture  differences between 
solid and  fluid are small for FS < 0.1, which is in 
compliance with the local thermal  equi l ibr ium 
assumption.  
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